### STRUCTURAL STUDIES ON POLYNUCLEAR OSMIUM CARBONYL HYDRIDES

## XXXII \*. CRYSTAL AND MOLECULAR STRUCTURE OF CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -H)( $\mu$ -O)[ $\mu$ -C=CH(p-tol)], A HYDRIDO-VINYLIDENE CLUSTER COMPLEX PRODUCED BY REARRANGEMENT OF A $\mu_3$ -ALKYLIDYNE CLUSTER

### MELVYN ROWEN CHURCHILL \*\* and YONG-JI LI

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14214 (U.S.A.)

(Received April 8th, 1985)

#### Summary

The hydrido-vinylidene complex CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -H)( $\mu$ -O)[ $\mu$ -C=CH(p-tol)], previously prepared by pyrolysis of CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)[ $\mu_3$ -CCH<sub>2</sub>(p-tol)] in boiling toluene, has been investigated crystallographically. The complex crystallizes in the centrosymmetric monoclinic space group  $P2_1/c$  (No. 14) with a 9.522(2), b 22.376(6), c 12.761(3) Å,  $\beta$  98.276(17)°, V 2690.5(11) Å<sup>3</sup> and  $D_{calc'd}$  2.97 g/cm<sup>3</sup> for Z = 4 and molecular weight 1204.8. Single crystal X-ray diffraction data (Mo- $K_{\alpha}$ , 2 $\theta$  4.0-40.0°) were collected with a Syntex P2<sub>1</sub> diffractometer and the structure refined to R 7.9% for all 2529 data [R 5.6% for those 2041 reflections with  $|F_0| > 3\sigma(|F_0|)$ ). The molecule is based upon a tetrahedral WOs<sub>3</sub> core. Each Os is linked to three terminal CO ligands and the W atom is bonded to an  $\eta^5$ -C<sub>5</sub>H<sub>5</sub> ligand. The  $\mu$ -vinylidene fragment spans the W-Os(2) edge (W-C(1) 2.082(40), Os(2)-C(1) 2.148(39) Å) and the  $\mu$ -oxo ligand spans the W-Os(3) edge of the cluster (W=O 1.791(23) and Os(3)-O 2.131(21) Å). The hydride ligand (which was not directly located) is believed to span the elongated Os(3)-Os(1) edge of the tetrahedron.

#### Introduction

The reaction of Cp(CO)<sub>2</sub>W=C(*p*-tol) (Cp =  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>, *p*-tol = *p*-CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>) with  $(\mu$ -H)<sub>2</sub>Os<sub>3</sub>(CO)<sub>10</sub> yields a variety of mixed-metal clusters [6,7] including the tetranuclear (WOs<sub>3</sub>)- $\mu_3$ - $\eta^2$ -acyl complex CpWOs<sub>3</sub>(CO)<sub>11</sub>[ $\mu_3$ - $\eta^2$ -OCCH<sub>2</sub>(*p*-tol)] (1). This

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

<sup>\*</sup> For recent previous papers see ref. 1-5.

<sup>\*\*</sup> Address correspondence to this author.

exotic complex has been shown to undergo facile C-O bond scission yielding the oxoalkylidyne species  $CpWOs_3(CO)_9(\mu-O)[\mu_3-CCH_2(p-tol)]$  (2) [8,9]. This oxoal-kylidyne species, has, in turn been shown [8] to undergo hydrogenation yielding the hydridooxoalkylidene species  $CpWOs_3(CO)_9(\mu-H)(\mu-O)[\mu-CHCH_2(p-tol)]$  (3); however, when a toluene solution of 2 is boiled under an inert (N<sub>2</sub>) atmosphere [8], the hydridooxovinylidene species  $CpWOs_3(CO)_9(\mu-H)(\mu-O)[\mu-C=CH(p-tol)]$  (4) is produced. The interrelationship of these species is diagrammed in Scheme 1.

We have previously reported X-ray structural analyses of 1 [6,7], 2 [8,9] and 3 [1]. We have now completed a crystallographic analysis of the final product of this reaction sequence (4); our results appear below.

### Experimental

Crystals of CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -H)( $\mu$ -O)[ $\mu$ -C=CH(p-tol)], synthesized as described previously [8] and recrystallized from dichloromethane/hexane, were provided to us by Prof. J.R. Shapley and Mr. J.T. Park of the Chemistry Department, University of Illinois at Urbana-Champaign. The crystal selected for the single-crystal X-ray diffraction study was an opaque dark-red parallelepiped of approximate orthogonal dimensions  $0.23 \times 0.10 \times 0.07$  mm<sup>3</sup>. It was mounted along its extended direction and centered on our Syntex P2<sub>1</sub> automated four-circle diffractometer. All operations were carried out as described previously [10]; details of data collection are provided in Table 1. The diffraction symmetry is 2/m ( $C_{2h}$ ). The systematic absences (h0l for l = 2n + 1 and 0k0 for k = 2n + 1 uniquely indicate the centrosymmetric monoclinic space group  $P2_1/c$  [No. 14;  $C_{2h}^5$ ].

A total of 2727 reflections (one-fourth of the shell with  $2\theta = 4.0-40.0^{\circ}$ ) were collected, corrected for the effects of absorption, and were merged to 2529 symmetry-independent data (R(I) 2.1%;  $R_w(I)$  2.2% for averaging statistics). All data were converted to unscaled  $|F_0|$  values following correction for Lorentz and polarization factors. Any datum with I(net) < 0 was assigned the value  $|F_0| = 0$ ; no data were rejected.

### Solution and refinement of the structure

All calculations were performed under the SUNY-Buffalo version of the Syntex XTL crystallographic program package. The  $F_c$  values were calculated from the analytical form of the appropriate neutral atom scattering factors; both the real  $(\Delta f')$  and the imaginary  $(i\Delta f'')$  components of anomalous dispersion were included for all non-hydrogen atoms [11]. The function  $\sum w(|F_0| - |F_c|)^2$  was minimized during least-squares refinement, where  $w = [\{\sigma(|F_0|)\}^2 + \{0.015|F_0|\}^2]^{-1}$ . Discrepancy indices are defined as follows.

$$R_F(\%) = 100\Sigma ||F_0| - |F_c||/\Sigma |F_0|$$

$$R_{wF}(\%) = 100 \Big[ \Sigma w (|F_0| - |F_c|)^2 / \Sigma w |F_0|^2 \Big]^{1/2}$$
  
GOF =  $\Big[ \Sigma w (|F_0| - |F_c|)^2 / (NO - NV) \Big]^{1/2}.$ 

Here, NO is the number of observations and NV is the number of variables.

The structure was solved by direct methods using the program MULTAN76, followed by difference-Fourier syntheses and full-matrix least-squares refinement.



SCHEME 1. Structural formulae of 1-4. (Note that 2, 3, and 4 have three CO ligands per osmium atom; these have been omitted for the sake of clarity).

Hydrogen atoms were included in calculated positions with d(C-H) 0.95 Å [12]. Convergence was reached with  $R_F$  7.9%.  $R_{wF}$  7.0% and GOF = 2.82 for all 2529 data ( $R_F$  5.6% and  $R_{wF}$  6.9% for those 2041 reflections with  $|F_0| > 3\sigma(|F_0|)$ .) Data were rather weak.

A correction was made for the effects of secondary extinction, using the approximate Zachariasan expression:  $|F_{o,corr}| = |F_{o,uncorr}|(1.0 + gI_0)$ . The value determined for g was  $0.346 \times 10^{-7}$ .

A final difference-Fourier synthesis showed no unexpected features; the structure is therefore both correct and complete. Atomic parameters are collected in Table 2.

| $CKISIALLOGKAPHIC DATA FOR CDWOS1(CO)0(\mu-H)(\mu-O)(\mu-CH(p-tot))$ | CRYSTALLOGRAPHIC DATA | FOR CpWOs <sub>1</sub> ( | CO) <sub>9</sub> (μ-H)(μ-O)[ | $\mu$ -C=CH(p-tol)] |
|----------------------------------------------------------------------|-----------------------|--------------------------|------------------------------|---------------------|
|----------------------------------------------------------------------|-----------------------|--------------------------|------------------------------|---------------------|

| (A) Unit cell parameters at 24°C (297 K)                                                  | · · · · · · · · · · · · · · · · · · ·                                                            |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Crystal system: monoclinic                                                                | Formula: $C_{23}H_{14}O_{10}Os_{3}W$                                                             |
| Space group: $P2_1/c$ (No. 14)                                                            | Molecular weight 1204.8                                                                          |
| a 9.522(2) Å                                                                              | Z = 4                                                                                            |
| b 22.376(6) Å                                                                             | $D_{\rm saled}$ 2.97 g cm <sup>-3</sup>                                                          |
| c 12.761(3) Å                                                                             | $\mu$ (Mo- $K_{a}$ ) 195.2 cm <sup>-1</sup>                                                      |
| β 98.276(17)°                                                                             |                                                                                                  |
| V 2690.5(11) Å <sup>3</sup>                                                               |                                                                                                  |
| (B) Collection of X-ray diffraction data                                                  |                                                                                                  |
| Diffractometer: Syntex P2 <sub>1</sub>                                                    |                                                                                                  |
| Radiation: Mo- $K_{\alpha}$ ( $\overline{\lambda}$ 0.710730 Å)                            |                                                                                                  |
| Monochromator: highly oriented (pyrolytic)<br>mode; assumed 50% perfect/50% ideally i     | graphite, $2\theta(m)$ 12.160° for 002 reflection; equatorial mosaic for polarization correction |
| Reflections measured: $+h$ , $+k$ , $\pm l$ for $2\theta$                                 | = $4.0-40.0^{\circ}$ ; 2727 reflections merged to 2529 unique data                               |
| Scan-type: coupled $\theta$ (crystal)-2 $\theta$ (counter)                                |                                                                                                  |
| Scan-speed: 2.50 deg/min                                                                  |                                                                                                  |
| Scan width: $[2\theta(K_{\alpha_1}) - 1.0] - [2\theta(K_{\alpha_2}) + 1.0]$               | ] deg                                                                                            |
| Backgrounds: stationary-crystal and station;<br>(each for one-half total scan time)       | ary-counter; measured at each end of the $2\theta$ scan                                          |
| Standards: 3 remeasured after each batch of                                               | 97 reflections; no significant fluctuations observed                                             |
| Absorption correction: empirical, based on i<br>close-to-axial reflections; max/min trans | interpolation (in $\phi$ and $2\theta$ ) between $\psi$ -scans on mission factor 1.7.            |
|                                                                                           |                                                                                                  |

### The molecular structure

The crystal contains an ordered arrangement of discrete  $CpWOs_3(CO)_9(\mu-H)(\mu-O)[\mu-C=CH(p-tol)]$  molecules; there are no unusually close intermolecular contacts. The molecular geometry and the atomic labelling scheme are depicted in Fig. 1. Interatomic distances and angles are listed in Tables 3 and 4.

The tungsten atom and the three osmium atoms define a tetrahedral core of metal which is associated with the expected 60 outer valence electrons. (With all metal atoms and ligands treated as formally neutral we have three  $d^8$  Os<sup>0</sup> atoms, one  $d^6$ W<sup>0</sup> atom, 18 electrons for the nine terminal carbonyl ligands, 5 electrons from the Cp ligand, 2 electrons from the  $\mu$ -C=CH(p-tol) ligand, 4 electrons from the  $\mu$ -oxo ligand (vide infra) and 1 electron from the  $\mu$ -hydride ligand.) Interestingly, each of the four metal atoms is in a different stereochemical environment. The molecule has only  $C_1(1)$  symmetry and is chiral; however, the crystal is racemic, with the two enantiomers interrelated by operations of the second kind (i.e., inversion centers and glide-planes).

Although the cluster as a whole is associated with 60 outer valence electrons, the formal electron-counts at the individual metal atoms vary appreciably, being  $17\frac{1}{2} e^{-}$  at Os(1), 18 e<sup>-</sup> at Os(2),  $19\frac{1}{2} e^{-}$  at Os(3) and 17 e<sup>-</sup> at W. Not surprisingly, there are significant differences in metal-metal bond lengths. Osmium-osmium distances are (in increasing order) Os(1)-Os(2) 2.793(2) Å, Os(2)-Os(3) 2.884(2) Å, and Os(3)-Os(1) 2.930(2) Å. The longest of these is believed to be that associated with the  $\mu$ -hydride ligand because (a) it is this bond that has been shown to be bridged by a  $\mu$ -hydride ligand in the very closely related molecule CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -H)( $\mu$ -O)[ $\mu$ -CHCH<sub>2</sub>(p-tol)] [1] and (b) a single unsupported bridging hydride ligand typically causes expansion of the bridged metal-metal bond relative to the equiv-

# FINAL ATOMIC PARAMETERS FOR CpWOs<sub>3</sub>(CO)<sub>9</sub>(µ-H)(µ-O)[µ-C=CH(p-tol)]

| (A) Positional and isotropic thermal parameters |                          |                          |                           |                     |  |
|-------------------------------------------------|--------------------------|--------------------------|---------------------------|---------------------|--|
| Atom                                            | x                        | у                        | Z                         | B (Å <sup>2</sup> ) |  |
| w                                               | 0.15533(15)              | 0.39964(8)               | 0.12465(11)               |                     |  |
| Os(1)                                           | 0.39172(15)              | 0.40601(8)               | 0.27445(12)               |                     |  |
| Os(2)                                           | 0.15840(16)              | 0.33722(8)               | 0.30993(12)               |                     |  |
| Os(3)                                           | 0.13017(16)              | 0.46548(8)               | 0.31391(12)               |                     |  |
| O(11)                                           | 0.5216(34)               | 0.2914(17)               | 0.2060(25)                | 6.83(80)            |  |
| O(12)                                           | 0.5548(34)               | 0.4810(16)               | 0.1382(26)                | 6.91(82)            |  |
| O(13)                                           | 0.5982(36)               | 0.4262(17)               | 0.4839(28)                | 7.23(87)            |  |
| O(21)                                           | 0.1898(31)               | 0.2145(16)               | 0.2338(23)                | 5.83(72)            |  |
| O(22)                                           | 0.3738(32)               | 0.3178(15)               | 0.5120(26)                | 6.24(76)            |  |
| O(23)                                           | -0.0950(41)              | 0.3105(18)               | 0.4257(30)                | 8.5(10)             |  |
| O(31)                                           | 0.1911(34)               | 0.4432(17)               | 0.5506(28)                | 7.32(85)            |  |
| O(32)                                           | 0.1157(35)               | 0.6004(18)               | 0.3421(27)                | 9.81(84)            |  |
| O(33)                                           | -0.1726(36)              | 0.4457(16)               | 0.3031(25)                | 6.59(80)            |  |
| O(B)                                            | 0.1015(21)               | 0.4748(10)               | 0.1460(16)                | 2.51(46)            |  |
| C(11)                                           | 0.4868(38)               | 0.3376(20)               | 0.2410(30)                | 3.77(85)            |  |
| C(12)                                           | 0.4839(42)               | 0.4521(20)               | 0.1973(32)                | 4.31(92)            |  |
| C(13)                                           | 0.5164(44)               | 0.4149(20)               | 0.4068(33)                | 4.6(10)             |  |
| C(21)                                           | 0.1943(40)               | 0.2599(21)               | 0.2706(32)                | 3.97(90)            |  |
| C(22)                                           | 0.3036(40)               | 0.3301(19)               | 0.4334(32)                | 3.94(87)            |  |
| C(23)                                           | -0.0057(58)              | 0:3205(26)               | 0.3814(42)                | 7.0(13)             |  |
| C(31)                                           | 0.1614(36)               | 0.4509(18)               | 0.4604(30)                | 3.32(80)            |  |
| C(32)                                           | 0.1197(50)               | 0.5540(27)               | 0.3275(38)                | 5.9(12)             |  |
| C(33)                                           | -0.0595(43)              | 0.4531(20)               | 0.3192(31)                | 8.07(89)            |  |
| C(1)                                            | -0.0033(40)              | 0.3476(19)               | 0.1753(30)                | 3.87(87)            |  |
| C(2)                                            | -0.1185(40)              | 0.3269(19)               | 0.1401(31)                | 3.95(89)            |  |
| C(3)                                            | -0.2158(33)              | 0.3394(16)               | 0.0452(52)                | 2.35(69)            |  |
| C(4)                                            | -0.2213(38)              | 0.3936(19)               | -0.0026(29)               | 3.59(83)            |  |
| C(5)                                            | -0.3093(41)              | 0.4050(20)               | -0.0946(32)               | 4.18(91)            |  |
| C(6)                                            | -0.4005(40)              | 0.3625(21)               | -0.1422(31)               | 4.41(92)            |  |
| C(7)                                            | -0.3954(34)              | 0.3077(17)               | -0.0981(27)               | 2.69(73)            |  |
| C(8)                                            | -0.3139(35)              | 0.2953(18)               | 0.0008(27)                | 2.79(75)            |  |
| $C_{(9)}$                                       | -0.4949(43)              | 0.3709(22)               | -0.24/3(34)               | 5.0(10)             |  |
| $C_{p(1)}$                                      | 0.1049(44)<br>0.2422(42) | 0.4037(21)<br>0.4032(21) | -0.0000(33)               | 4.7(10)             |  |
| Cp(2)                                           | 0.2432(43)               | 0.4233(21)               | -0.0303(32)<br>0.0103(28) | 4.0(10)             |  |
| Cp(3)                                           | 0.3223(37)<br>0.2272(44) | 0.3740(77)               | 0.0103(28)                | 5.10(00)            |  |
| Cp(5)                                           | 0.2272(44)<br>0.1020(42) | 0.3249(22)<br>0.3465(21) | -0.0377(32)               | 4 31(07)            |  |
| H(2)                                            | -01505                   | 0.2967                   | 0.1833                    | 35                  |  |
| H(4)                                            | -0.1619                  | 0 4247                   | 0.0289                    | 3.5                 |  |
| H(5)                                            | -0.3071                  | 0.4432                   | -0.1265                   | 3.5                 |  |
| H(7)                                            | -0.4484                  | 0.2762                   | -0.1350                   | 3.5                 |  |
| H(8)                                            | -0.3244                  | 0.2586                   | 0.0366                    | 3.5                 |  |
| H(91)                                           | -0.4835                  | 0.4177                   | -0.2649                   | 3.5                 |  |
| H(92)                                           | -0.5942                  | 0.3740                   | -0.2465                   | 3.5                 |  |
| H(93)                                           | - 0.4709                 | 0.3568                   | -0.3080                   | 3.5                 |  |
| HCp(1)                                          | 0.0262                   | 0.4301                   | -0.0868                   | 3.5                 |  |
| HCp(2)                                          | 0.2783                   | 0.4617                   | - 0.0506                  | 3.5                 |  |
| HCp(3)                                          | 0.4200                   | 0.3796                   | 0.0394                    | 3.5                 |  |
| HCp(4)                                          | 0.2499                   | 0.2854                   | 0.0313                    | 3.5                 |  |
| HCp(5)                                          | 0.0189                   | 0.3226                   | -0.0525                   | 3.5                 |  |

| TABLE 2 | (continued | I) |
|---------|------------|----|
|---------|------------|----|

| (B) Anis | B) Anisotropic thermal parameters for the metal atoms $a$ |                 |                        |                 |                        |                        |  |  |  |
|----------|-----------------------------------------------------------|-----------------|------------------------|-----------------|------------------------|------------------------|--|--|--|
| Atom     | <b>B</b> <sub>11</sub>                                    | B <sub>22</sub> | <b>B</b> <sub>33</sub> | B <sub>12</sub> | <b>B</b> <sub>13</sub> | <b>B</b> <sub>23</sub> |  |  |  |
| w        | 3.034(75)                                                 | 2.633(89)       | 2.337(75)              | 0.112(65)       | 0.536(54)              | 0.234(65)              |  |  |  |
| Os(1)    | 2.571(73)                                                 | 4.23(10)        | 3.242(81)              | 0.027(69)       | 0.606(56)              | 0.791(73)              |  |  |  |
| Os(2)    | 3.383(79)                                                 | 3.35(10)        | 2.435(77)              | -0.297(67)      | 0.681(56)              | 0.399(63)              |  |  |  |
| Os(3)    | 3.233(78)                                                 | 3.37(10)        | 3.400(87)              | -0.194(67)      | 0.630(60)              | -0.729(68)             |  |  |  |

<sup>a</sup> The anisotropic thermal parameters are in standard Syntex XTL format and enter the expression for the calculated structure factor in the form:  $\exp[-0.25(h^2a^{*2}B_{11}+k^2b^{*2}B_{22}+l^2c^{*2}B_{33}+2hka^*b^*B_{12}+2hla^*c^*B_{13}+2klb^*c^*B_{23})]$ .

alent non-bridged bond [13–17]. The heteronuclear tungsten-osmium distances show a similar degree of variation with (in order) W-Os(1) 2.739(2) Å, W-Os(2) 2.743(2) Å and W-Os(3) 2.868(2) Å. A similar pattern is observed in CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -H)( $\mu$ -O)[ $\mu$ -CHCH<sub>2</sub>(p-tol)] [1] with W-Os distances of 2.735(2), 2.746(2) and 2.916(1) Å and in CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -O)[ $\mu$ <sub>3</sub>-CCH<sub>2</sub>(p-tol)] [8,9] with W-Os distances of 2.655(1), 2.663(1) and 2.814(1) Å.

### The $W(\mu$ -O)Os system

The  $\mu$ -oxo ligand, defined here as O(B), spans the W-Os(3) edge of the tetrahedral cluster. The W-O(B)-Os(3) plane deviates by only 14.72° from the W-Os(2)-Os(3) triangular face of the cluster (see Table 5, planes C and B). Relevant dimensions are W-O(B) 1.791(23) Å, Os(3)-O(B) 2.131(21) Å and angle W-O(B)-Os(3) 93.6(9)°.



Fig. 1. Labelling of non-hydrogen atoms within the CpWOs<sub>3</sub>(CO)<sub>9</sub>( $\mu$ -H)( $\mu$ -O)[ $\mu$ -C=CH(p-tol)] molecule. The  $\mu$ -hydride ligand is believed to occupy a position about the Os(1)-Os(3) vector. Both the  $\mu$ -O and  $\mu$ -C=CH(p-tol) ligands are stipped for clarity [ORTEP-II diagram].

| (A) Metal - metal distances   W-Os(1) 2.739(2) Os(1)-Os(2) 2.793(2)   W-Os(2) 2.743(2) Os(3)-Os(1) 2.884(2)   W-Os(3) 2.868(2) Os(3)-Os(1) 2.930(2)   (B) Metal-(bridging ligand) distances W V 2.082(40)   Os(3)-O(B) 2.131(21) Os(2)-C(1) 2.148(39)   (C) Osmium-carbonyl distances (including all Os C distances < 3 Å) 0s(1)-C(11) 1.86(4) Os(1)O(11) 3.03(4)   Os(1)-C(12) 1.75(4) Os(1)O(12) 3.01(3) 0s(1)-C(13) 3.11(4)   Os(2)-C(21) 1.85(5) Os(2)O(22) 3.09(3) 0s(2)-C(22) 3.05(4)   Os(2)-C(22) 1.95(4) Os(2)O(23) 3.05(4) Os(3)O(33) 3.03(4)   Os(2)-C(23) 1.96(6) Os(3)O(33) 3.03(4) Os(3)O(33) 3.05(4)   Os(3)-C(32) 1.99(6) Os(3)O(33) 3.05(4) Os(3)O(33) 3.05(4)   Os(3)-C(22) 2.86(4) Cp(1)-Cp(2) 1.37(6) W Cp(2)-Cp(3) 1.35(6)   W-Cp(1) 2.34(4) Cp(3)-Cp(3) 1.34(6) <th></th> <th></th> <th>F =3(= -/9</th> <th></th> |                      |                             | F =3(= -/9             |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|------------------------|-----------|
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (A) Metal-metal di.  | stances                     |                        |           |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W-Os(1)              | 2.739(2)                    | Os(1)-Os(2)            | 2.793(2)  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W-Os(2)              | 2.743(2)                    | Os(2)-Os(3)            | 2.884(2)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W-Os(3)              | 2.868(2)                    | Os(3) - Os(1)          | 2.930(2)  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (B) Metal-(bridging  | z ligand) distances         |                        |           |
| Os(3)-O(B) 2.131(21) Os(2)-C(1) 2.148(39)   (C) Osmium -carbonyl distances (including all Os C distances < 3 Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WO(B)                | 1.791(23)                   | <b>W-C(1)</b>          | 2.082(40) |
| (C) Osmium - carbonyl distances (including all Os C distances < 3 Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Os(3)-O(B)           | 2.131(21)                   | Os(2)-C(1)             | 2.148(39) |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (C) Osmium - carbon  | yl distances (including al  | l OsC distances < 3 Å) |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Os(1)-C(11)          | 1.86(4)                     | Os(1)O(11)             | 3.03(4)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Os(1)-C(12)          | 1.75(4)                     | Os(1)O(12)             | 3.01(3)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Os(1)-C(13)          | 1.93(4)                     | Os(1)O(13)             | 3.11(4)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Os(2)-C(21)          | 1.85(5)                     | Os(2)O(21)             | 2.94(4)   |
| $\begin{array}{c cccccc} Os(2)-C(23) & 1.96(6) & Os(2)\dots O(23) & 3.06(4) \\ Os(3)-C(31) & 1.88(4) & Os(3)\dots O(31) & 3.03(4) \\ Os(3)-C(32) & 1.99(6) & Os(3)\dots O(32) & 3.05(4) \\ Os(3)-C(33) & 1.84(4) & Os(3)\dots O(33) & 2.90(3) \\ Os(1)-C(22) & 2.86(4) & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Os(2)-C(22)          | 1.95(4)                     | Os(2)O(22)             | 3.09(3)   |
| $\begin{array}{c cccccc} Os(3)-C(31) & 1.88(4) & Os(3)\dots O(31) & 3.03(4) \\ Os(3)-C(32) & 1.99(6) & Os(3)\dots O(32) & 3.05(4) \\ Os(3)-C(33) & 1.84(4) & Os(3)\dots O(33) & 2.90(3) \\ Os(1)-C(22) & 2.86(4) & & & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Os(2)-C(23)          | 1.96(6)                     | Os(2)O(23)             | 3.06(4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Os(3)-C(31)          | 1.88(4)                     | Os(3)O(31)             | 3.03(4)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Os(3) - C(32)        | 1.99(6)                     | Os(3)O(32)             | 3.05(4)   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Os(3)-C(33)          | 1.84(4)                     | Os(3)O(33)             | 2.90(3)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Os(1)-C(22)          | 2.86(4)                     |                        |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (D) Distances with   | $\eta^5 - C_5 H_5 W$ moiety |                        |           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W-Cp(1)              | 2.34(4)                     | Cp(1)-Cp(2)            | 1.37(6)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W-Cp(2)              | 2.39(4)                     | Cp(2)-Cp(3)            | 1.35(6)   |
| $\begin{array}{cccccccc} W-Cp(4) & 2.41(5) & Cp(4)-Cp(5) & 1.34(6) \\ W-Cp(5) & 2.38(4) & Cp(5)-Cp(1) & 1.36(7) \\ W\dots Cent & 2.065 & & & & \\ \hline (E) \ Carbon-oxygen \ distances \\ C(11)-O(11) & 1.19(6) & C(23)-O(23) & 1.11(7) \\ C(12)-O(12) & 1.26(5) & C(31)-O(31) & 1.16(5) \\ C(13)-O(13) & 1.19(6) & C(32)-O(32) & 1.06(7) \\ C(21)-O(21) & 1.12(6) & C(33)-O(33) & 1.08(5) \\ C(22)-O(22) & 1.16(5) & & \\ \hline (F) \ Distances \ within \ C=CH(p-tol) \ ligand \\ C(1)-C(2) & 1.22(6) & C(6)-C(7) & 1.35(6) \\ C(2)-C(3) & 1.44(5) & C(7)-C(8) & 1.41(5) \\ C(3)-C(4) & 1.36(5) & C(8)-C(3) & 1.42(5) \\ C(4)-C(5) & 1.37(6) & & \\ \hline \end{array}$                                                                                                                                                            | W-Cp(3)              | 2.36(4)                     | Cp(3)-Cp(4)            | 1.49(6)   |
| $\begin{array}{c ccccc} W-Cp(5) & 2.38(4) & Cp(5)-Cp(1) & 1.36(7) \\ W\dots Cent & 2.065 \\ \hline \\ (E) \ Carbon-oxygen \ distances \\ C(11)-O(11) & 1.19(6) & C(23)-O(23) & 1.11(7) \\ C(12)-O(12) & 1.26(5) & C(31)-O(31) & 1.16(5) \\ C(13)-O(13) & 1.19(6) & C(32)-O(32) & 1.06(7) \\ C(21)-O(21) & 1.12(6) & C(33)-O(33) & 1.08(5) \\ C(22)-O(22) & 1.16(5) \\ \hline \\ (F) \ Distances \ within \ C=CH(p-tol) \ ligand \\ C(1)-C(2) & 1.22(6) & C(6)-C(7) & 1.35(6) \\ C(2)-C(3) & 1.44(5) & C(7)-C(8) & 1.41(5) \\ C(3)-C(4) & 1.36(5) & C(8)-C(3) & 1.42(5) \\ C(4)-C(5) & 1.37(6) & C(6)-C(9) & 1.54(6) \\ \hline \end{array}$                                                                                                                                                                                              | W-Cp(4)              | 2.41(5)                     | Cp(4)-Cp(5)            | 1.34(6)   |
| WCent2.065(E) Carbon - oxygen distances $C(11)-O(11)$ 1.19(6) $C(23)-O(23)$ 1.11(7) $C(12)-O(12)$ 1.26(5) $C(13)-O(13)$ 1.19(6) $C(23)-O(32)$ 1.06(7) $C(21)-O(21)$ 1.12(6) $C(22)-O(22)$ 1.16(5)(F) Distances within C=CH(p-tol) ligand $C(1)-C(2)$ 1.22(6) $C(2)-C(3)$ 1.44(5) $C(7)-C(8)$ 1.41(5) $C(3)-C(4)$ 1.36(5) $C(4)-C(5)$ 1.37(5) $C(6)-C(9)$ 1.54(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W-Cp(5)              | 2.38(4)                     | Cp(5)-Cp(1)            | 1.36(7)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WCent                | 2.065                       |                        |           |
| $\begin{array}{ccccccc} C(11)-O(11) & 1.19(6) & C(23)-O(23) & 1.11(7) \\ C(12)-O(12) & 1.26(5) & C(31)-O(31) & 1.16(5) \\ C(13)-O(13) & 1.19(6) & C(32)-O(32) & 1.06(7) \\ C(21)-O(21) & 1.12(6) & C(33)-O(33) & 1.08(5) \\ C(22)-O(22) & 1.16(5) & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (E) Carbon – oxygen  | distances                   |                        |           |
| $\begin{array}{ccccccc} C(12)-O(12) & 1.26(5) & C(31)-O(31) & 1.16(5) \\ C(13)-O(13) & 1.19(6) & C(32)-O(32) & 1.06(7) \\ C(21)-O(21) & 1.12(6) & C(33)-O(33) & 1.08(5) \\ C(22)-O(22) & 1.16(5) & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(11)-O(11)          | 1.19(6)                     | C(23)-O(23)            | 1.11(7)   |
| $\begin{array}{ccccccc} C(13)-O(13) & 1.19(6) & C(32)-O(32) & 1.06(7) \\ C(21)-O(21) & 1.12(6) & C(33)-O(33) & 1.08(5) \\ C(22)-O(22) & 1.16(5) & & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(12)-O(12)          | 1.26(5)                     | C(31)–O(31)            | 1.16(5)   |
| $\begin{array}{cccc} C(21)-O(21) & 1.12(6) & C(33)-O(33) & 1.08(5) \\ C(22)-O(22) & 1.16(5) & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(13)-O(13)          | 1.19(6)                     | C(32)-O(32)            | 1.06(7)   |
| C(22)-O(22)1.16(5)(F) Distances within $C=CH(p-tol)$ ligand $C(1)-C(2)$ 1.22(6) $C(6)-C(7)$ 1.35(6) $C(2)-C(3)$ 1.44(5) $C(7)-C(8)$ 1.41(5) $C(3)-C(4)$ 1.36(5) $C(8)-C(3)$ 1.42(5) $C(4)-C(5)$ 1.37(5) $C(6)-C(9)$ 1.54(6) $C(5)-C(6)$ 1.37(6) $C(6)-C(9)$ $C(6)-C(9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(21)-O(21)          | 1.12(6)                     | C(33)-O(33)            | 1.08(5)   |
| (F) Distances within $C=CH(p-tol)$ ligand $C(1)-C(2)$ $1.22(6)$ $C(6)-C(7)$ $1.35(6)$ $C(2)-C(3)$ $1.44(5)$ $C(7)-C(8)$ $1.41(5)$ $C(3)-C(4)$ $1.36(5)$ $C(8)-C(3)$ $1.42(5)$ $C(4)-C(5)$ $1.37(5)$ $C(6)-C(9)$ $1.54(6)$ $C(5)-C(6)$ $1.37(6)$ $1.54(6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(22)–O(22)          | 1.16(5)                     |                        |           |
| $\begin{array}{ccccc} C(1)-C(2) & 1.22(6) & C(6)-C(7) & 1.35(6) \\ C(2)-C(3) & 1.44(5) & C(7)-C(8) & 1.41(5) \\ C(3)-C(4) & 1.36(5) & C(8)-C(3) & 1.42(5) \\ C(4)-C(5) & 1.37(5) & C(6)-C(9) & 1.54(6) \\ C(5)-C(6) & 1.37(6) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (F) Distances within | C=CH(p-tol) ligand          |                        |           |
| $\begin{array}{cccc} C(2)-C(3) & 1.44(5) & C(7)-C(8) & 1.41(5) \\ C(3)-C(4) & 1.36(5) & C(8)-C(3) & 1.42(5) \\ C(4)-C(5) & 1.37(5) & C(6)-C(9) & 1.54(6) \\ C(5)-C(6) & 1.37(6) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(1)-C(2)            | 1.22(6)                     | C(6)-C(7)              | 1.35(6)   |
| C(3)-C(4)   1.36(5)   C(8)-C(3)   1.42(5)     C(4)-C(5)   1.37(5)   C(6)-C(9)   1.54(6)     C(5)-C(6)   1.37(6)   1.54(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(2)-C(3)            | 1.44(5)                     | C(7)-C(8)              | 1.41(5)   |
| C(4)-C(5) 1.37(5) C(6)-C(9) 1.54(6)<br>C(5)-C(6) 1.37(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(3)-C(4)            | 1.36(5)                     | C(8)-C(3)              | 1.42(5)   |
| C(5)-C(6) 1.37(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(4)-C(5)            | 1.37(5)                     | C(6)C(9)               | 1.54(6)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(5)-C(6)            | 1.37(6)                     |                        |           |

INTERATOMIC DISTANCES (Å), WITH Esd's, FOR CpWOs<sub>3</sub>(CO)<sub>9</sub>(µ-H)(µ-O)[µ-C=CH(p-tol)]

If we define the unbridged metal-metal bonds in the cluster as normal single bonds we can calculate approximate covalent radii of  $\sim 1.42$  Å for osmium (from  $\frac{1}{4}[d(Os(1)-Os(2)) + d(Os(2)-Os(3))])$  and  $\sim 1.32$  Å for tungsten (from d(W-Os(1))-r(Os)). The W-O(B) bond lengths of 1.791(23) Å is substantially shorter than the predicted W-O single bond length of  $\sim 1.98$  Å (from r(W) 1.32 Å and r(O) 0.66 Å [18]). It is slightly longer than well-defined tungsten-oxygen double bonds in such discrete mononuclear species as W(=O)(=CHCMe\_3)(PEt\_3)Cl\_2 (W=O 1.661(11) Å) [19] and W(=O)(=CHCMe\_3)(PMe\_3)\_2Cl\_2 (W=O 1.697(15) Å) [20]. It is substantially shorter than typical tungsten-alkoxide bonds as found in W(C\_3Et\_3)[O-2,6-C\_6H\_3(i-Pr)\_2]\_3 (W-O 1.885(6)-2.008(6) Å) [21], W(C\_3Et\_3)[OCH(CF\_3)\_2]\_3 (W-O 374

## TABLE 4

INTERATOMIC ANGLES (deg.) FOR CpWOs<sub>3</sub>(CO)<sub>9</sub>(µ-H)(µ-O)(µ-C=CH(p-tol)]

| (A) Interatomic angles        |                            | •                             |           |
|-------------------------------|----------------------------|-------------------------------|-----------|
| Os(1)-W-Os(2)                 | 61.26(6)                   | W-Os(2)-Os(1)                 | 59.31(6)  |
| Os(2)-W-Os(3)                 | 61.81(6)                   | Os(1)-Os(2)-Os(3)             | 62.14(6)  |
| Os(3)-W-Os(1)                 | 62.97(6)                   | Os(3)-Os(2)-W                 | 61.24(6)  |
| W-Os(1)-Os(2)                 | 59.43(6)                   | W-Os(3)-Os(1)                 | 56.36(5)  |
| Os(2)-Os(1)-Os(3)             | 60.45(6)                   | Os(1)-Os(3)-Os(2)             | 57.41(5)  |
| Os(3)-Os(1)-W                 | 60.67(6)                   | Os(2)-Os(3)-W                 | 56.95(5)  |
| (B) $M - M - CO$ angles       |                            |                               |           |
| W-Os(1)-C(11)                 | 100.1(12)                  | W-Os(2)-C(21)                 | 102.9(13) |
| W - Os(1) - C(12)             | 93.8(14)                   | W-Os(2)-C(22)                 | 131.1(12) |
| W-Os(1)-C(13)                 | 163.0(13)                  | W-Os(2)-C(23)                 | 126.1(16) |
| Os(2) - Os(1) - C(11)         | 90.5(12)                   | Os(1) - Os(2) - C(21)         | 106.9(13) |
| Os(2) - Os(1) - C(12)         | 153.2(14)                  | Os(1) - Os(2) - C(22)         | 71.8(12)  |
| Os(2)-Os(1)-C(13)             | 108.6(13)                  | Os(1) - Os(2) - C(23)         | 152.7(16) |
| Os(3)-Os(1)-C(11)             | 150.2(12)                  | Os(3)-Os(2)-C(21)             | 163.4(13) |
| Os(3) - Os(1) - C(12)         | 109.7(14)                  | Os(3) - Os(2) - C(22)         | 97.1(12)  |
| Os(3) - Os(1) - C(13)         | 103.5(13)                  | Os(3) - Os(2) - C(23)         | 95.7(16)  |
| W-Os(3)-C(31)                 | 136.7(11)                  | Os(2)-Os(3)-C(31)             | 81.0(12)  |
| W-Os(3)-C(32)                 | 126.5(15)                  | Os(2) - Os(3) - C(32)         | 175.6(15) |
| W-Os(3)-C(33)                 | 98.9(13)                   | $O_{s(2)} - O_{s(3)} - C(33)$ | 86.9(13)  |
| $O_{s(1)} - O_{s(3)} - C(31)$ | 94.3(12)                   |                               |           |
| $O_{s(1)} - O_{s(3)} - C(32)$ | 121.4(15)                  |                               |           |
| Os(1)-Os(3)-C(33)             | 143.3(13)                  |                               |           |
| (C) $Os - C - O$ and $OC - C$ | Os–CO angles               |                               |           |
| Os(1)-C(11)-O(11)             | 166(4)                     | C(11)-Os(1)-C(12)             | 93.2(19)  |
| Os(1)-C(12)-O(12)             | 175(4)                     | C(12) - Os(1) - C(13)         | 97.8(19)  |
| Os(1)-C(13)-O(13)             | 173(4)                     | C(13)-Os(1)-C(11)             | 91.6(18)  |
| Os(2)-C(21)-O(21)             | 166(4)                     | C(21)-Os(2)-C(22)             | 90.3(18)  |
| Os(2)-C(22)-O(22)             | 167(4)                     | C(22)-Os(2)-C(23)             | 97.4(20)  |
| Os(2)-C(23)-O(23)             | 177(5)                     | C(23)-Os(2)-C(21)             | 98.0(12)  |
| Os(3)-C(31)-O(31)             | 175(4)                     | C(31)-Os(3)-C(32)             | 95.1(19)  |
| Os(3)-C(32)-O(32)             | 175(5)                     | C(32) - Os(3) - C(33)         | 94.9(20)  |
| Os(3)-C(33)-O(33)             | 167(4)                     | C(33)-Os(3)-C(31)             | 87.3(17)  |
| (D) Angles involving the      | C(1), the vinylidene car   | bon atom                      |           |
| W-C(1)-Os(2)                  | 80.8(14)                   | W-Os(2)-C(1)                  | 48.6(11)  |
| W-C(1)-C(2)                   | 139.0(34)                  | Os(2)-W-C(1)                  | 50.7(11)  |
| Os(2)-C(1)-C(2)               | 1 <b>39.4(34</b> )         |                               |           |
| (E) Angles involving O(1      | B), the bridging oxide lig | gand                          |           |
| W - O(B) - Os(3)              | 93.6(9)                    | Os(1)-W-O(B)                  | 94.0(7)   |
| W-Os(3)-O(B)                  | 38.6(6)                    | Os(2)-W-O(B)                  | 108.4(7)  |
| Os(3)-W-O(B)                  | 47.9(7)                    | C(31)-Os(3)-O(B)              | 175.3(13) |
| (F) $C-C-C$ angles with       | in the C=CH(p-tol) lig     | and and a second second       |           |
| C(1)-C(2)-C(3)                | 132(4)                     | C(8)-C(3)-C(4)                | 118(3)    |
| C(2)-C(3)-C(4)                | 122(3)                     | C(3)-C(4)-C(5)                | 122(4)    |
| C(2)-C(3)-C(8)                | 120(3)                     | C(4)-C(5)-C(6)                | 122(4)    |
| C(5)-C(6)-C(9)                | 120(4)                     | C(5)-C(6)-C(7)                | 118(4)    |
| C(7)-C(6)-C(9)                | 122(4)                     | C(5)-C(7)-C(8)                | 122(3)    |
|                               |                            | C(7)-C(8)-C(3)                | 118(3)    |

TABLE 4 (continued)

| (G) Angles within the $\eta^5$ -C | SH <sub>5</sub> ligand       |                                                     |        |  |
|-----------------------------------|------------------------------|-----------------------------------------------------|--------|--|
| Cp(5)-Cp(1)-Cp(2)                 | 106(4)                       | Cp(3)-Cp(4)-Cp(5)                                   | 103(4) |  |
| Cp(1)-Cp(2)-Cp(3)                 | 110(4)                       | Cp(4)-Cp(5)-Cp(1)                                   | 113(4) |  |
| Cp(2)-Cp(3)-Cp(4)                 | 107(3)                       |                                                     |        |  |
| (H) Angles about "Cent" (I        | the centroid of the $\eta^2$ | <sup>5</sup> -C <sub>5</sub> H <sub>5</sub> Ligand) |        |  |
| Cent-W-Os(1)                      | 113.3                        | Cent-W-O(B)                                         | 118.9  |  |
| Cent-W-Os(2)                      | 132.7                        | Cent-W-C(1)                                         | 113.1  |  |
| Cent-W-Os(3)                      | 163.0                        |                                                     |        |  |

1.932(10)-1.982(11) Å [22] and W[C(t-Bu)CHC(t-Bu)][OCH(CF<sub>3</sub>)<sub>2</sub>]<sub>3</sub> (W-O 1.954(7)-1.959(7) Å [23], even though there is some oxygen-tungsten  $\pi$ -donation in these species. All indications are that the W-O(B) linkage is a formal double bond. The Os(3)-O(B) distance of 2.131(21) Å is slightly longer than expected for a single bond (r(Os) + r(O) = 1.42 + 0.66 = 2.08 Å) and we treat this as a "coordinate-covalent" or donor bond, i.e., O:  $\rightarrow$  Os. The  $\mu$ -oxo ligand is thus a 4-electron donor (neutral atom counting scheme). The W( $\mu$ -O)Os system is best depicted as in



structure 5. The present molecule joins the three others with this feature, viz.:  $CpWOs_3(CO)_9(\mu-O)[\mu_3-CCH_2(p-tol)]$  (2) [8,9],  $CpWOs_3(CO)_9(\mu-H)(\mu-O)[\mu-CHCH_2(p-tol)]$  (3) [1] and  $CpWOs_3(CO)_8(\mu-O)(\mu_3-\eta^2-C_2H_2)(\mu-H)$ , [4]. Dimensions within these species are compared in Table 6. As can readily be seen, dimensions for the last three entries are completely self-consistent. The W-Os distance and the W-O-Os angle are anomalously small in  $CpWOs_3(CO)_9(\mu-O)[\mu_3-CCH_2(p-tol)]$  (2), simply because this W-Os vector is now part of the WOs<sub>2</sub> face capped by the  $\mu_3$ -CCH<sub>2</sub>(p-tol) ligand; in complexes 3 and 4 the  $\mu_2$ -CHCH<sub>2</sub>(p-tol) or  $\mu_2$ -C=CH(p-tol) ligands are linked only to the tungsten atom of the W( $\mu$ -O)Os system and in  $CpWOs_3(CO)_8(\mu-O)(\mu_3-\eta^2-C_2H_2)(\mu-H)$  this W-Os vector is part of the triangular WOs<sub>2</sub> face capped by the sterically undemanding  $\mu_3-\eta^2-C_2H_2$  ligand.

### Other features of the molecule

All other features of the molecular geometry are within the expected ranges. Individual Os-CO distances are 1.75(4)-1.99(6) Å, C-O distance are 1.06(7)-1.26(5) Å and Os-C-O angles are  $166(4)-177(5)^\circ$ . The *p*-tolylvinylidene fragment spans the W-Os(2) vector, with W-C(1) 2.08(4) Å and Os(2)-C(1) 2.15(4) Å; carbon-carbon bond lengths are consistent with the formulation C=CH(*p*-tol).

The vinylidene ligand (as defined by W-Os(2)-C(1)-C(2)) is essentially coplanar with the cluster face W-Os(1)-Os(2), the dihedral angle between these planes being only 0.05° (see Table 5, planes A and B). The *p*-tolyl moiety is twisted by 35.03° from coplanarity with the W-Os(2)-C(1)-C(2) system.

The  $\eta^5$ -C<sub>5</sub>H<sub>5</sub> ligand is planar within experimental error and the W...Cent distance is 2.065 Å.

IMPORTANT PLANES (AND ATOMIC DEVIATIONS THEREFROM, IN Å) WITHIN THE  $CpWOs_3(CO)_9(\mu-H)(\mu-O)[\mu-C=CH(p-tol)]$  MOLECULE "

| Atom                                                | Dev.                                    | Atom         | Dev.        |
|-----------------------------------------------------|-----------------------------------------|--------------|-------------|
| Plane A: Plane of W-                                | Os(1) - Os(2)                           |              |             |
| 0.4518x - 0.7911y                                   | -0.4123z = -7.1589                      | <b>6</b> (1) |             |
| W^                                                  | 0.000                                   | C(1)         | -0.066(41)  |
| $O_{s(1)}^{*}$                                      | 0.000                                   | C(2)         | 0.017(42)   |
| Os(2)^                                              | 0.000                                   | C(3)         | - 0.051(35) |
| Plane B: Plane of W-<br>0.9786x - 0.0909v -         | Os(2) - Os(3)<br>- 0.1844z = -2.3268    |              |             |
| W*                                                  | 0.000                                   | O(B)         | 0.337(20)   |
| Os(2)*                                              | 0.000                                   |              | . ,         |
| Os(3)*                                              | 0.000                                   |              |             |
| Plane C: Plane of W-<br>-0.9513x -0.3047            | O(B) - Os(3)<br>y - 0.0459z = -3.9865   |              | ·           |
| W*                                                  | 0.000                                   | Os(2)        | 0.614(2)    |
| Os(3)*                                              | 0.000                                   | Os(1)        | - 2.010(2)  |
| O(B)★                                               | 0.000                                   |              |             |
| Plane D: Plane of W-<br>0.4511x - 0.7914y -         | Os(2) - C(1) - C(2) - 0.4126z = -7.1740 |              |             |
| W*                                                  | 0.012(2)                                | Os(1)        | 0.009(2)    |
| Os(2)*                                              | 0.011(2)                                | Os(3)        | - 2.405(2)  |
| C(1)*                                               | -0.053(42)                              | C(3)         | -0.036(35)  |
| C(2)*                                               | 0.030(42)                               | C(6)         | -0.107(44)  |
| Plane E: Plane of C(3)<br>0.7945x - 0.3094y -       | (-C(8)) - C(8) = -4.3761                |              |             |
| C(3)*                                               | 0.029(32)                               | C(2)         | 0.088(40)   |
| C(4)*                                               | -0.002(37)                              | C(9)         | 0.017(44)   |
| C(5)*                                               | -0.005(40)                              | C(1)         | 0.532(39)   |
| C(6)*                                               | -0.018(40)                              |              |             |
| C(7)*                                               | 0.046(34)                               |              |             |
| C(8)*                                               | -0.050(34)                              |              |             |
| Plane F: Plane of $\eta^{5}$ .<br>0.3406x - 0.2483y | $C_5H_5 \ ring = -1.1574$               |              |             |
| Cp(1)*                                              | -0.032(42)                              | w            | -2.064(1)   |
| Cp(2)*                                              | 0.033(41)                               | O(B)         | -2.915(21)  |
| Cp(3)*                                              | -0.022(36)                              | $O_{s(1)}$   | -3.142(2)   |
| Cp(4)*                                              | 0.002(42)                               | Os(2)        | - 3.945(2)  |
| Cp(5)*                                              | 0.018(41)                               | Os(3)        | -4.797(2)   |
| Selected interplanar an                             | ngles                                   |              | . /         |
| Plane A/Plane D                                     | 0.05°                                   | (179.95°)    |             |
| Plane B/Plane C                                     | 14.72°                                  | (165.28°)    |             |
| Plane D/Plane E                                     | 35.03°                                  | (144.97°)    |             |

<sup>a</sup> Atoms marked with an asterisk are those used in calculating the appropriate plane. Equations for planes are in orthonormalized coordinates.

Additional material. A table of observed and calculated structure factors is available on request (from M.R.C.)

.

| TABLE 0    |        |          |        |      |            |    |
|------------|--------|----------|--------|------|------------|----|
| DIMENSIONS | OF THE | W(µ-O)Os | SYSTEM | IN W | Os, CLUSTE | RS |

| Complex                                                                                     | d(W=O)    | d(Os-O)   | d(W-Os)  | Angle W-O-Os | Ref.            |
|---------------------------------------------------------------------------------------------|-----------|-----------|----------|--------------|-----------------|
| $\overline{\text{CpWOs}_3(\text{CO})_9(\mu\text{-O})[\mu_3\text{-CCH}_2(p\text{-tol})](2)}$ | 1.812(7)  | 2.169(8)  | 2.663(1) | 83.5(3)      | 8, 9            |
| $CpWOs_{1}(CO)_{0}(\mu-H)(\mu-O)[\mu-CHCH_{2}(p-tol)]$ (3)                                  | 1.737(17) | 2.167(16) | 2.916(1) | 96.0(7)      | 1               |
| $CpWOs_3(CO)_9(\mu-H)(\mu-O)[\mu-C=CH(p-tol)]$ (4)                                          | 1.791(23) | 2.131(21) | 2.868(2) | 93.6(9)      | Present<br>work |
| $CpWOs_3(CO)_8(\mu-O)(\mu_3-\eta^2-C_2H_2)(\mu-H)$                                          | 1.761(8)  | 2.200(8)  | 2.885(1) | 92.8(4)      | 4               |

### Acknowledgements

We thank Professor J.R. Shapley for providing the sample and for his continuing interest in these studies. This work was supported, in part, by NSF Grant CHE 80-23448.

#### References

TADI D

- 1 Part XXXI: M.R. Churchill and Y.J. Li, J. Organomet. Chem., 291 (1985) 61.
- 2 Part XXX: W.Y. Yeh, J.R. Shapley, Y.J. Li and M.R. Churchill, Organometallics, 4 (1985) 767.
- 3 Part XXIX: J.T. Park, J.R. Shapley, M.R. Churchill and C. Bueno, Inorg. Chem., 23 (1984) 4476.
- 4 Part XXVIII: M.R. Churchill, C. Bueno, J.T. Park and J.R. Shapley, Inorg. Chem., 23 (1984) 1017.
- 5 Part XXVII: M.R. Churchill and C. Bueno, J. Organomet. Chem., 256 (1983) 357.
- 6 J.R. Shapley, J.T. Park, M.R. Churchill, C. Bueno and H.J. Wasserman, J. Am. Chem. Soc., 103 (1981) 7385.
- 7 J.T. Park, J.R. Shapley, M.R. Churchill and C. Bueno, Inorg. Chem., 22 (1983) 1579.
- 8 J.R. Shapley, J.T. Park, M.R. Churchill, J.W. Ziller and L.R. Beanan, J. Am. Chem. Soc., 106 (1984), 1144.
- 9 M.R. Churchill, J.W. Ziller and L.R. Beanan, J. Organomet. Chem., 287 (1985) 235.
- 10 M.R. Churchill, R.A. Lashewycz and F.J. Rotella, Inorg. Chem., 16 (1977) 265.
- 11 International Tables for X-Ray Crystallography, Volume 4, Kynoch Press, Birmingham, England, 1974: p. 99-101 and 149-150.
- 12 M.R. Churchill, Inorg. Chem., 12 (1973) 1213.
- 13 M.R. Churchill and B.G. DeBoer, Inorg. Chem., 16 (1977) 878.
- 14 M.R. Churchill and B.G. DeBoer, Inorg. Chem., 16 (1977) 2397.
- 15 M.R. Churchill, B.G. DeBoer and F.J. Rotella, Inorg. Chem., 15 (1976) 1843.
- 16 M.R. Churchill, Adv. Chem. Series, 167 (1978) 36.
- 17 R.G. Teller and R. Bau, Structure and Bonding, 44 (1981) 1.
- 18 L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, 1960, Table 7-2, p. 224.
- 19 M.R. Churchill, J.R. Missert and W.J. Youngs, Inorg. Chem., 20 (1981) 3388.
- 20 M.R. Churchill and A.L. Rheingold, Inorg. Chem., 21 (1982) 1357.
- 21 M.R. Churhill, J.W. Ziller, J.H. Freudenberger and R.R. Schrock, Organometallics, 3 (1984) 1554.
- 22 J.H. Freudenberger, R.R. Schrock, M.R. Churchill, A.L. Rheingold and J.W. Ziller, Organometallics, 3 (1984) 1563.
- 23 M.R. Churchill and J.W. Ziller, J. Organomet. Chem., 286 (1985) 27.